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Abstract, Let D be the set of differential operators on functions defined on B3, Let ¢ p =
0,1,2 and 3 be scalar, vecior, psendovector and density fields on &3, respectively. Then o
can be regarded as a multilinear map ¥ — D.

Letrg,...,mp € I3 and et {ro, ..., 7p) be the Euclidean p-snmplex having these vertices.
Then the integral of o™ over (rg,...,»,) is a function PP (g, .. ., Tp) which satisfies
File — 5, F% Here de'P means grad @, curl &, or div o™, and das is a natural
cohomological operator (the usuat Alexander-Spanier co-boundary operator, given by (5) in
the text). For any function F(rp,...,7p} there is & natural map PF cDP o D {given by
{11) in the text) which satisfies ®%SF = §5®F where 8y is the Hochschild co-boundary
(equation (3)) for co-chains &€ on D.

Thus, when o is regarded as being the cochain CD"'“ on D, grad, curl and div all
become Hochsehild co-boundary operators: grad @™ (&) is the commutator of the operator &
with the function o™ and curl o' (H), H,) measures the amount by which o fails to be a
derivation on D. If div «® = 0 then o provides a deformation of the composition product
on D.

This new viewpoint of fields as operator-valued maps of p-tuples of operators has
implications in several areas of physics and mathematics. One consequence is that the
Hamiltonian in quantum mechanics may be regarded as its own probability current density
operator. Another is that Maxwell’s equations describe the algebraic character of the electnc
and magnetic fields E and B regarded as co-chains on D.

We give some explicit formulae for o/'P(H), ..., Hp).

1. Introduction

There is an isomorphism between the de Rham cohomology of forms on any manifold M
and the F-relative Hochschild cohomology of p-co-chains on the associative algebra of
differential operators on C®(M,R). For M = R? the formulae simplify greatly and are
accessible from vector calculus without any differential geometry. There are interesting
algebraic interpretations of several physical quantities.

Let @@, p = 0,1,2 and 3 be scalar, vector, pseundovector and density fields,
respectively, on R, (We discuss the case R3\A, where A C R® is a closed subset, later.)
Let D = D(R?) be the associative algebra of differential operators on C®(R3, R)=F, and
let H;eD, j=1,2,.

doz“’) denote grad o;‘o) curl oe“) and div o®,
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1018 F J Bloore and T J Harding

We may regard ¢'® as a differential p-form, that is an antisymmetric R-linear function
of p vector fields. Given vector fields X;, (which may be regarded as first-order differential
operators, and so elements of D), we can make

PN Xy, LX)

which is a function and so may be regarded as a zero-order differential

The present work extends the domain of a{” from p-tuples of first-order operators X;
to p-tuples of differential operators H; € D of any order. The extended P is denoted
D, its action on the H; yields a differential operator rather than a function:

D (Hy,..  HyeD. ()

Such maps from ®FD to D are called Hochschild p-co-chains on D. The 0-co-chains are
the elements of D. The important property of D¥ is that

D% = gy D 2)
whefé 8y, the Hochschild co-boundary on co-chains on D, is given by
suD*"(H,, ..., Hyy) = By D" (H,, ..., Hpsy) = D2 (HiHa, ..., Hppt) +++-
HDPD (M, ..., HyHpst) + (— 1P D™ (Hyy o H)Hps . (3)
Thus, for example, the scalar field ¥ is a zero-order differential operator
D =a®eD,
The vector field ! can be regarded as a map D" : D — D, and (2) states that
perad a® (H) = [H, am)]
Do Ehy = Hy 0 D" (#y) — D™ (B H) + DYV (1) o By

Thus a curl-free vector field o gives a derivation D*"': D — D which is inner if
a® = grad ¢®. Similarly a divergence-free pseudovector field «® gives a deformation
of the algebra D, which is trivial if ® is a curl. This aspect is pursued in section 6
where we shall interpret Maxwell’s equations as algebraic statements about the action of
the Hochschild 1-co-chains E and %B and the 2-co-chains £ and B on the algebra D.

The theory can be extended to map p-forms on any manifold M into Hochschild p-
co-chains on D(M) [1] and in fact leads to an isomorphism between the de Rham and
F-relative Hochschild cohomologies.

When restricted back to vector fields, D% does not qulte agree with o

D*(Xi,...,X,) = Eacxl,...,x,,).

The factor 1/p! could be eliminated by rescaling the conventional definition (3) of dy.

The construction of D¥ from o preseated in section 2 is more transparent than that
described in [1]. We first obtain the integral F**(ry, ..., 7p) of a” over the Euclidean
p-simplex having vertices rp, ..., 7,. We then make from F< the required multilinear
map D«*: DP - D.

Section 3 describes the main properties of D%, Section 4 contains some formuiae for
the maps D™ In section 5 we offer a geometrical interpretation of the map p: D p
and relate it in seciion 6 to the probability current in quantum mechanics. Section 6 also
contains the algebraic interpretation of Maxwell's equations.
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2. Fields as co-chains on D

The construction of D*® proceeds in two stages. In stage one we make the function e
from

e (Fo,ooaPp) = f a(”)(r) d?r ' (4)
(Pliseeni?p)
where (g, ..., rp) is the Euclidean p-simplex having ry, ..., 7, as vertices. For p = 1,

(ro, 71) is the directed straight line segment from 7o to 7). Similarly, (rg, 71, 72) is an
oriented triangle, and (rg, ..., T2) is an oriented tetrahedron. The p-simplex (rg, ..., ")
has boundary ’ :

p s
g, ..., )= (1Y (ro.... B, ..n,p)
j=0 )

where " denotes omission.
Let us define the (Alexander—Spanier co-boundary) operator 8,5 by

Sas(Fy=Fod

ie.
) &l —
JAs(Fﬂp)(Tg. e Tp-l-l) = Z(—I)JF&’ (7‘0, . f‘j, ey ?"p+1) . (5)
s

Then by Stokes’s theorem

pla® _ Sas F"’m . 6)

So in stage one we have converted a field o® into a function F** of p + 1 variables
05 reen ’f‘p. - .
In stage two we convert a function F(r, ..., 7p) into a Hochschild p-co-chain ®F on

D as follows. For a separable function F,
F(ro,..., ™) = @ filr) .. fo(ry)  ie. F=f®...®7, %
and H; € D, define -

O (Hy, ..., Hy) = foHi filh.. . Hpfp €. ®)
Note that ’
as(fo®.. ) =10 /0@..9F,—/i®1I®fi®...® fr+--

+EDMH®... R 81 ©)
and that for F given by (7) )

PinsF = 50" . (10)
Every function F(rg, ..., 7p) is the limit of a sum of separable functicns of the form (7).

We therefore define for a general F and any function ¢ € F

(@F(H, ..., Hp)¥)(ro). _
= [Hy (P} Ha(r2) ... Hp(rp)[F(ro, ..., 7)Y (7p) ry=rpi ) - - Irymry (11)
since this formula reduces to {8) in the case when F is separable, and so satisfies (10). Here
the notation Hy(r)) means, for example, that if
a 9

= a' - —
H(r)=a (T)ax‘ Py
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then

a 8
H, = g (p)— 2
ifr)=a (Tl)a o 7

Equation (11) depends only on the partial derivatives of F at the diagonal point v, =
Tpmt = - = 1o of (R®)P*1. We define

ot
Dd(m = qDF P)- (12)

The main result, equation (2}, follows from (6) and (10).

The definition (12) will make sense even when R? is replaced by any open subset R3\ A
since although F* “ will not now be globally definable, we can still define it by (4) for
71,...,Tp in a small open contractible neighbourhood of rp. This suffices to define the
partial derivatives required in (11)}.

3. Some properties of D=

(i) It follows from (4) of F¢ that

F*" (ry, .. .,rp) =0
whenever r; = r;_1, 1 € j € p. For such F in (11), the expression
[fip(rp)[f?(ro,..., )Y @M e, (13)

will vanish if the differential operator Hj, has order zero. The factor F must be differentiated
by H, at least once before 7, is set equal to 7,1, in order not to vanish, So H), may
differentiate ¥ at most ord H, — 1 times. Similar arguments for the other H; imply that
the order of the operator X (Hy, ..., Hy) is

]
ord ®F(H,,..., Hy) = ord H;— p
j=1
and
SF(Hy, ..., Hp) =0

if any Hj has order zero.
(iiy Let g;, f = 1,2, ... be functions. Then if F is separable, (7),

O (g1 Hy, g2Fh. ... Hpga) =810 @ (Hio gy, Hy, ..., Hp) 0 83

and this property extends by linearity to ®f for any F, not necessarily separable.
(iii) Define the conjugate operators

® __ 9 *_ 9 * * rrk
&= Qﬂ)— G () = HIHT.

1 Formula (9) superficially resembles the equation for 8 in the description of the differential envelope @ (F) using

functions F{rg, ..., rp) in non-commutative differential geometry, {2]. One difference is that in the present work
Fhdliy, 0y # fiatra) FO (o, r1)

whilst in the differential envelope

FRtfi(ry, ) = ford(A10r1) — filrod) = Folra) FoA (rg. 71}
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Then

DY (Hy, ..., Hp)* = (=1)PP2pe® (g HY. (14)
To see this, put

Fi(rg, ..., Tp) = F(Pp,...,T0).
So for separable F,

OF(Hy, ... )Y = fHY .. Hf fo =97 (H},.... H}).

This property extends by linearity to &F for any F. Since F*“(ry,...,T,) is totally
antisymmetric,

FePx o (— 1).0(P+1)/2Fa‘”’
giving (14). '
4. Some explicit calculations

For p = 1, the line segment (rq, r1) may be parametrized as
Bxt

() =79+ t(r) — T0) 0Kt E--:x{—x;;.
Hence
P (o, ) = 10 dr oD @) (x —xi) .
t=
Similarly for p =2, 7
r(t, 2} = To + t(r — 7o} + f2(r2 — 71} 0yl

1 t1 ‘
(2] , = . N .
F* (g, 71, 1) = f dz dez a:{z)(r(tl, N {(x} — xg)(x; — x{).

=0 L= 0
Here it is conveniesit to write the pseudovector components o (2) = 0132 = a:fz), and so on.
Denote
¢ @
Faepp (g, 71, 1) = PP ——5 F(ro, 71, 72)
*2 axz ra=ry
Then
0] m 1 1
Fi (0, 70) = o (ro) i 70, 70) = HAVRAIGY

FS b (To, 71, 1) = (x; — x§) dtlf dy a2 (r (1, 1))

n=0 =
—a—F“ (rg, 1, 1) -G-’ 2 (o)
pyw 2 0:71, 7] . ab \'0
1 ™M=r
2 @) L 2 2
[a 2 ;hZC(TOv 1. Ti)] = E(D‘c(:b)c tEC)b) ('f' )
T1=7p

It then follows from (11} that for H; = 3/3x",

(ro, m)wm)]] = F% (ro, 7o) (ro) = M o)y (rg) .

1=

L d
(D @YY o) = [ o
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Similarly

1) a a (1)
(D" (3,29 ) (ro) = [3—; 2w, n)w(n)]}
1

ri=ry
= P, (ro, To)¥(ro) -+ F3e. (ro, 7o)0a(ro) + F& (o, o) a(ro)
= [Fleg +a52) + o8 + 08 ]y (7). (15)
In particular, with H = 8,9, = V2,
D% (V%) = diva™ + 20 grad.

If oV = grade®, the right-hand side reduces to the commutator [V2, @], consistently
with (2). One may similarly compuie

D" (8, 35) = 4a@
D™ (B0, 8520) = (el + i) + 3 (0 + 22 35)
D**(v2, V%) = 202, 8, = Zeurlo® grad.

The general formulae are as follows. Let [/ and J, be multi-indices, explicitly
I ={(,...,in}, and denote

5 = 2 .8
=

Then

D) =8 o (U, 6

( )— IZ d ail,iz..,idafd.;.]---ail,l- (1 )
d=]
i 1A
@ NN 4 o
th (afs 3]) SISJ;;( )( d+d_;wl'(l}hfzu-fdjz---,idraid+! ...ajl.” (17)

where Sy denotes symmetrization over I.

5. Meaning of D=" (H)
The Euclidean metric on M = R\ A provides a flat connection V, on the tangent bundle

TM. Then each H € D can be uniquely expressed as

ord H

H(Vo)= Y  a®v§
k=0

for some symmetric contravariant tensor fields a® on M. In detail
HyY = a{o)‘!f +ah Y + i Vg + -
Equation (16) tells us that

D (a® V) Y (ro) = a“"(ro)[va‘(m[ f( «D(r) dr z,fr(mﬂ

7 =T

—a‘“(ro)z( ) (V1) (ro) (VE4) (o)
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50 that
pet! (@OVE) =a® (e o VE! + Vooo® o VEZ 4 ... 4 Vi1 5 D)
1 k
= a® lim —((Vs, + ec’Y* — V). 18
“ e—»()e(( 0+ €a ) 0) ( )
Hence we may write

D= (H) = (3H(V),a(|))

Y 19

=%

That is to say D®" (H) is the Fréchet derivative of H(V) in the direction ¢} evaluated at
the connection V. Here A (V) is regarded as an operator-valued function on the space of
connections on M.

6. Applications

6.1. The probability current in guantum mechanics

Equation (19) is reminiscent of the formula ‘6H/§A’ for the current in gauge theory [3].
The link is made explicit in this section.

In traditional quantum mechanics the wave function ¥ of a particle moving in
R3\A = M is a square-integrable complex-valued function on M which satisfies

by = Hy
where H € D is Hermitian. The probability density p = ¥¢ then satisfes

fa,p =2Im{yr. Hy} =0
which implies that we may write
& p = —divJ(y¥) 20

for some probability flux vector J(v). Although (20} only fixes the divergence of J(¥, )
the textbooks say that when

H=—iV:+V(r) @en
~ the correct J(3) among all the possible candidates with the right divergence is
J@) =ImFVy). T ) (22)

The usual justification is that this gives J = k when ¢ = ei®*7~®"_ This raises the cuestion:
what structure is required to select the ‘correct’ J when H is an arbitrary Hermitian cperator?

It is useful to re-pose the problem in terms of de Rham p-currenis [4]. A p-current is
a real-valued linear function on ‘test’ p-forms. Thus a O-current p is a scalar density or
generalized function, characterized by its action on test functions f € F,

4. fy= [ of cr.

A 1-current J is a vector density and acts on test 1-forms n (which must be smooth and of
sufficiently fast decrease at infinity),

{F, =f Jin;.
M
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There is a natural map ‘div’ from p-currents to (p — [)-currents:
{divC, o)) = —{C, do}).
If we multiply (20} by f and integrate, we obtain

W, 8F) =i T, 1) = ap, £y = [ ahws |
= (¢, ilf, H¥) = —ily, DY (H)y) . (23)

Equation (23} tells us that the action of iJ(¥) on an exact 1-form df is the expectation
value of the operator DY/ (H). The problem is to extend the definition of iJ () to any
1-form 7. This is the ‘current’ version of the problem with which we began—to choose
J () given only its divergence. It is natural to conjecture that

(LT (), i = (¥, D(EDY).

One may now regard / itself as an operator-valued de Rham current whose action on
the test 1-form n gives the operator D"(H) whose expectation value in the state i is the
usual probability current iJ(yr) smeared by ». In this sense H is the probability current.
The structure required to select the ‘correct’ J is that needed to turn forms into co-chaing
on D, namely the Euclidean metric in the present instance. In the most general case a
connection on TM provides the required structure, although other constructions exist [1].

One can check that when H is given by (21),

D'"(H)=—3(; 00+ 3 on)

and
[orm ér=—4i [ nhoy - @ .

This example can be generalized to create conserved Noether currents for any Hermitian
linear differential equation [5].

It may also be adapted to geometric quantization theory. There, H acts on sections of
a complex line bundle E over M. The 1-form % acts as a translation (I'; = T'; +~€n;) on
the Affine space of connections on E rather than as the translation I, = T}, + em:8f on

the connections on TM. See [6].

6.2. Maxwell’s equations

Maxwell’s equations in a vacuum [7]

dB =0 (24)
9B = —dE (25)
d(+E) =0 (26)
8 (+E) = d(xB) @n

may be interpreted as statements about the action of the Hochschild I-co-chains DE, D*E
and 2-co-chains D*E, D? on the algebra D. In section 4 we suppressed the symbols %
but here we shall make them explicit in order to indicate the degree of the form involved:
(£E)y = —(%E}ss = Ey; (xB); = Bas. Equations (24) and (26) tell us that DE and D*E
are deformations of the algebra D. That is to say, for B we may define a new composition
product o,p on D

Hy oeg Ho:= Hy o Hy +e¢DP(H;, Hy) . (28)
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One can check that
Hi cep (Hy 0cp H3) — (H) 0cp Ha) 0cp Hy = €8 DB (Hy, Ha, Hs) + O(€?) = 0(€?)

since D% = D7 = 0, so that the new composition law is associative to order €. In
particular,

8u 0cs Oy = Budp + 5€Bas
and so

(025 Bp),, *= 84 0cp Op — By Cep O = €Byp .
From (18) for any A,

H(Vy+€A) = H(Vo) + eD*(H) + O(e?). 29
So if B has a vector potential A, B = dA, the deformed product (28) becomes

Hy 0.5 Hy = HiHy + ¢(Hi D*(Hh) — DA(H\ Hy) + DA (H)YH,)

= (Hy + DA (H)))(H + e D* (Hy)) — € DA (Hy Hp) + O(€?)

which from (29) is equal to

Hi\Hy+ Hi(Vo + €A) Ha(Vo + €A) — (Hi ) (Vo +ed) +0(e?).  (30)

Thus the deformed product H; o.p Hs arises in this case by transforming the operators
H;(Vp) = H;(Vg+€A) in a2 way determined by the perturbation of the Euclidean connection
by the vector potential A. Such deformations may be considered trivial. Any 1-form A will
provide a trivially deformed product on D in this way.

Even when B has no vector potential, equation (25) shows that the time derivative of
the deformed product of two time-independent operators Hj, Ho,

8 (M1 0ep Ha) = Hy ocp, Ha (31)

will be given by the perturbation Vg - Vg —€E, and so is trivial in the above sense. This
is the algebraic interpretation of (25); the geometric version is of course that B remains in
the same de Rham cohomology class as time passes.

In the static case the deformed product o.p is constant in time; dE = 0 so that DE is
a derivation on D.

Equations (26) and (27) yield a similar co-chain interpretation.
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