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Abstract. Let V be the set of differential operators on functions defined on R3, h t  &), p = 
0 , l .  2 and 3 be scalar, vector, pseudovector and density,fields on R3. respectively. Then CL@) 

c m  be reganled as a multilinear map Vp -t 'D. 
Let TO,  . . . , T,, E W3 and let (TO. . . . , T ~ )  be the Euclidean p-simplex having these vertices. 

Then the integral of over (m, . . . , r,,) is a function F''"(m, . . . , T,,) which satisfies 
Fda = SASF. Here dah) means grad a@), curl d'), or div a(21, and SAS is a natural 
cohomological operator (the usual AlexanderSpanier co-boundary operator, given by (5)  in  
the text). For any function F ( q ,  . . . , T,,) there is a natural map W? : VP --* i7 (given by 
(11) in the text) which satishes @*SF = S X Q F  where 6~ is the Hochsehild co-bomdary 
(equation (3)) for co-chains QF on V. 

Thus, when a@) is regarded as being the wchain 0") on V. gad, curl and div all 
become Hochschild co-boundary operators: grad am' (H)  is the commutator of the operator H 
with the function a@) and curl & ) ( H I ,  H2) measures the amount by which a(') flils to be a 
derivation an V. If div up) = 0 then a 0  provides a deformation of the composition product 
on v. 

This new viewpoint of helds as opentor-valued maps of p-tuples of operators has 
implications in several areas of physics and mathematics. One consequence is that the 
Hamiltonian in quantum mechanics may be regarded as iui own probability current density 
operator. Another is that Maxwell's equations describe the algebnic character of the electric 
and magnetic fields E and B regarded as co-chains on V. 

We give some explicit formulae for & ) ( H I ,  , . . , H,,). 

1. Introduction 

There is an isomorphism between the de Rham cohomology of forms on any manifold M 
and the 3-relative Hochschild cohomology of p-co-chains on the associative algebra of 
differential operators on Cm(M,  R). For M = R3 the formulae simplify greatly and are 
accessible from vector calculus without any differential geometry. There are interesting 
algebraic interpretations of several physical quantities. 

Let a@), p = 0,1,2 and 3 he scalar, vector, pseudovector and density fields, 
respectively, on B3. (We discuss the case @\A,  where A c B3 is a closed subset, later.) 
Let D = D(R3) be the associative algebra of differential operators on C"(B3, W) = F, and 
let Hj E D, j = ~ l ,  2 , .  . . . 

dol@) denote grad a~?, curl a(') and div e('). 
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We may regard a(p) as a differential p-form, that is an antisymmetric B-linear function 
of p vector fields. Given vector fields Xj, (which may be regarded as first-order differential 
operators, and so elements of D),  we can make 

a q x  I,...,Xp) 

which is a function and so may be regarded as a zero-order differential 
The present work extends the domain of a@) from p-tuples of first-order operators Xj 

to p-tuples of differential operators Hj E D of any order. The extended a@) is denoted 
DOL'"'; its action on the H j  yields a differential operator rather than a function: 

D'"'I(H1, . . . , H,) E D .  (1) 

Such maps from @.PD to D are called Hochschild p-co-chains on D. The 0-co-chains are 
the elements of D. The important properly of D" is that 

Dde = &D" (2 )  

whete aH, the Hochschild co-boundary on co-chains on D, is given by 

SK Du'" ( H i ,  ..., Hp+i) = HID""(Hzr ..., If,,+]) -D"'"(HiHz, ..., H,+i)+..' 

+(- l)pDrr'u'(Hi,  . . . , Hp Hp+i) + (- 1)"l De'"' (HI, . . , H,,) Hp+i . (3) 
Thus, for example, the scalar field do) is a zero-order differential operator 

D@' = E 2, , 

The vector field a(1) can be regarded as a map DU'l' : 2, + D ,  and (2) states that 

D6mdndum'(H) = [ H ,  do)] 
DNIl.''J (HI, Hz) = Hi o D""(Hz) - P " ' ( H r H 2 )  + D""'(Hi) o Hz. 

Thus a curl-free vector field a(1) gives a derivation Du"': D + D which is inner if 
a(') = grad do). Similarly a divergence-free pseudovector field a(') gives a deformation 
of the algebra D, which is trivial if a(') is a curl. This aspect is pursued in section 6 
where we shall interpret Maxwell's equations as algebraic statements about the action of 
the Hochschild I-co-chains E and * B  and the 2-co-chains * E  and E on the algebra D. 

The theory can be extended to map p-forms on any manifold M into Hochschild p- 
co-chains on D(M) [I] and in fact leads to an isomorphism between the de Rham and 
F-relative Hochschild cohomologies. 

When restricted back to vector fields, D' does not quite agree with a: 
1 

D " ( X l , .  .. , X,,) =  XI, ..., X,) 
P !  

The factor I / p !  could be eliminated by rescaling the conventional definition (3) of SK. 
The construction of Du from a presented in section 2 is more transparent than that 

described in [l]. We first obtain the integral Frr ' " (~o , .  . . , T,,) of a(") over the Euclidean 
p-simplex having vertices TO. . . . , T,,. We then make from Fe'"' the required multilinear 
map D""': DP --f D. 

Section 3 describes the main properties of D'. Section 4 contains some formulae for 
the maps Da(". In section 5 we offer a geometrical interpretation of the map D'"': V + V 
and relate it in secrion 6 to the piobability current in quantum mechanics. Section 6 also 
contains the algebraic interpretation of Maxwell's equations. 
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2. Fields as eo-chains on ’D 

The construction of D“’) proceeds in two stages. In stage one we make the function 08‘) 
from 

1 ff(P)(T)dPr (4) 
a(#) F (TO,. . . , T,,) = 

(re. .... T,) 
where (TO.. . . , T,,) is the Euclidean p-simplex having TO,. . . , r, as vertices. For p = 1, 
(TO, T I )  is the directed straight line segment from TO to TI.  Similarly, (TO, T I ,  v - ~ )  is an 
oriented triangle, and (TO,. . . , ~ 3 )  is an oriented tetrahedron. The p-simplex (TO,. . . , T,,) 
has boundary 

P 

a(ro,. . . , r p )  = C ( - - I ) ~ ( ~ ~ ,  .. . ,3,. .. , TP ) 
j=O 

where ̂ denotes omission. 
Let us define the (AlexanderSpanier co-boundary) operator SAS by 

s ~ ~ ( F )  = F 0 a 
i.e. 

Then by Stokes’s theorem 

Fb‘” = SAS Fa(” , (6) 
So in stage one we have converted a field a(P) into a function Fa‘’’ of p + 1 variables 

In stage two we convert a function F(To, .  . . , rP) into a Hochschild p-co-chain @’ on 

i.e. (7) 

(8) 

To, . . . , T p .  

V as follows. For a separable function F ,  

F(To,. . . , T ~ )  = ~ O ( T O ) ~ I ( T I )  ;.. f p ( T p )  F = fo~@ . . . @ fp 

and Hj E V, define 

@F(HI, .. . , H p )  = f o H ,  fiH2..  . Hp fp E v. 
Note that 

SAS(f0 @ .  .. @ fp) = 1 @ f O @  ... @ fp -fO @ 1 @ f l  @ .  .. @ fp f‘.’ 
+(-I)P+’fo @ . . . @ fp @ 1 

@‘ASF = SH@‘. (10) 

(9) 
and that for F given by (7) 

Every function F(ro, . . . , T ~ )  is the limit of a sum of separabIe functions of the form (7). 
We therefore define for a general F and b y  function Q E F 
(@F(Hl,. . . 1  Hp)Q)(T0). 

= [HI(TI)tHZ(T2)[. . . H P ( T P ) [ F ( T O , ~ ~ .  9 Tp)Q(Tp)llT&,=q.,l~~ .I,,=, (11) 
since this formula reduces to (8) in the case when F is separable, and so satisfies (IO). Here 
the notation HI (TI) means, for example, that if 
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then 

Equation (11) depends only on the partial derivatives of F at the diagonal point T~ = 
Tp-l = . . . TO of (R3)P+'. We define 

(12) 

The main result, equation (2), follows from (6) and (IO). 
The definition (12) will make sense even when R3 is replaced by any open subset @\\A 

since although FU'" will not now be globally definable, we can still define it by (4) for 
T ~ ,  . . . , T~ in a small open contractible neighbourhood of TO. This suffices to define the 
partial derivatives required in (1l)t. 

p ' Y '  = Q F.(PI 

3. Some properties of D" 

(i) It follows from (4) of Fa that 

F"("(To, . . . , T p )  = 0 

whenever T~ = ~ j - 1 , l  < j < p .  For such F in (ll),  the expression 

[Hp(Tp)IF(To, , . . > Tp)'d'(Tp)~l~p=vp-L (13) 
will vanish if the differential operator H, has order zero. The factor F must be differentiated 
by H p  at least once before T~ is set equal to T~-,, in order not to vanish. So Hp may 
differentiate at most ord Hp - 1 times. Similar arguments for the other Hj imply that 
the order of the operator +'(HI,. . . , H p )  is 

P 
ord Q F ( H 1 , .  . . , H p )  = c o r d  Hi,- p 

j=1 

and 

QF(H I , . . . , H p ) = O  

if any Hj has order zero. 
(ii) Let g j ,  j = 1 ,2 , .  . . be functions. Then if F is separable, (7), 

QF(g iHirg2Hz  ,..., H ~ ~ ~ ) = ~ ~ o ~ ~ ( H I o ~ z , H z  , . . . . H p ) o g 3  
and this property extends by linearity to QF for any F ,  not necessarily separable. 

(iii) Define the conjugate operators 

t Formula (9) superficially resembles the equation for 6 in the description of the differential envelope S2 (F) using 
functions F(ro, . . . , r,) in non-commutative differential geomeuy, 121. One difference is that in the present work 

~ f a ~ f l ( ~ n ,  TI) # f i , ( ~ ~ ) ~ ~ f f i  (ro, TI)  

whilst in the differential envelope 

FfoSf1(Po.PO = fil(To)(fi(Tl) - fI(T0)) = f n ( ~ i i ) F ~ " ( T o , f i )  
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Then 

D"(Y'(H1, . . . , HP)* = (-l)P(P+')/zDu(,"'(H* p '  ... > fq). 
To see this, put 

F"(r0 , .  . . , T p )  = F ( T p , .  . . , TO). 
So for separable F, 

@ ' ( H I , .  . . , Hp)* = fpHp* .  . . H; fo = @''(H;, . . . , H;) . 
This property extends by linearity to 0' for any F. Since F'"(ro, 
antisymmetric, 

F@* = ( - 1 ) P ( P + I ) / Z p ( P '  

giving (14). 

4. Some explicit calculations 

For p = 1, the line segment (TO, TI) may be parametrized as 

(14) 

. ,rJ is totally 
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Similarly 

F J Bloore and T J Harding 

Then 

where SI denotes symmetrization over I .  

5. Meaning of D""'(H) 

The Euclidean metric on M = W3\A provides a flat connection 00 on the tangent bundle 
T M .  Then each H E 2, can be uniquely expressed as 
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Hence we may write 

That is to say Da"'(H) is the Frkchet derivative of H ( V )  in direction U(') ev; ated at 
the connection 0,. Here H ( V )  is regarded as an operator-valued function on the :;pace of 
connections on M. 

6. Applications 

6.1. The probability current in quantum mechanics 

Equation (19) is reminiscent of the formula 'S'HH/SA' for the current in gauge theory [3]. 
The link is made explicit in this section. 

In traditional quantum mechanics the wave function @ of a particle moving in 
B3\A = M is a square-integrable complex-valued function on M which satisfies 

i&@ = H1/, 
where H E D is Hermitian. The probability density p = $@ then satisfies 

which implies that we may write 

a,p = -divJ(@) 

for some probability flux vector .I(@). Although (20) only fixes the divergence of J(@,  ) 
the textbooks say that when 

(21) H = -fvZ + V ( T )  

JW) = Im($V*). 

the correct J ( @ )  among all the possible candidates with the right divergence is 

(22) 
The usual justification is that this gives J = IC when I) = ei(k'r-or). This raises the question: 
what structure is required to select the 'correct' J when H is an arbitrary Hermitian operator? 

It is useful to re-pose the problem in terms of de Rham p-currents 141. A p-current is 
a real-valued linear function on 'test' p-forms. Thus a 0-current p is a scalar density or 
generalized function, characterized by its action on test functions f E F, 

. .  

A 1-current J is a vector density and acts on test 1-forms 
sufficiently fast decrease at infinity), 

(which must be smooth and of 
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There is a natural map 'div' from p-currents to ( p  - I)-currents: 

F J Bloore and T J Harding 

((divC, o)) = -((C, do)). 

If we multiply (20) by f and integrate, we obtain 

((JWL df ) )  = - (WvJ(@L f)) = ((azp. f)) = / a t c S i v  
=~(@, i[f, HI@) = Ddf(H)@). (23) 

Equation (23) tells us that the action of iJ(JI) on an exact 1-form df is the expectation 
value of the operator D d f ( H ) .  The problem is to extend the definition of iJ(@) to any 
1-form q. This is the 'current' version of the problem with which we began-to choose 
J ( @ )  given only its divergence. It is natural to conjecture that 

((iJ(@L 17)) = (J17 D n ( H ) @ ) .  
One may now regard H itself as an operator-valued de Rham current whose action on 

the test I-form 17 gives the operator D " ( H )  whose expectation value in the state JI is the 
usual probability current U(@) smeared by q. In this sense H is the probability current. 
The structure required to select the 'correct' J is that needed to tum forms into co-chains 
on D, namely the Euclidean metric in the present instance. In the most general case a 
connection on TM provides the required structure, although other constructions exist 111. 

One can check that when H is given by (21). 

D"H) = -$(vi o a, +a i  o v i )  
and 

~ D " ( i H ) @ d 3 r  = -1. 2 1 S v i t + a i i -  ( a i + ) w 3 7 :  s 
This example can be generalized to create conserved Noether currents for any Hermitian 

linear differential equation [5].  
It may also be adapted to geometric quantization theory. There, H acts on sections of 

a complex line bundle E over M. The 1-form q acts as a translation (ri H ri + cqi )  on 
the Affine space of connections on E rather than as the translation rb H i$ + eqi$ on 
the connections on TM. See [6]. 

6.2. Maxwell's equations 

Maxwell's equations in a vacuum 171 

d B = O  (24) 

&(*E) = d(*B) (27) 

&B = -dE (25) 
d(*E) = 0 (26) 

may be interpreted as statements about the action of the Hochschild 1-co-chains D E ,  D*B 
and 2.40-chains D*€, D E  on the algebra D. In section 4 we suppressed the symbols * 
but here we shall make them explicit in order to indicate the degree of the form involved: 
(*E)23 = -(*E)32 = El; (*B)I = B23. Equations (24) and (26) tell us that D B  and D X E  
are deformations of the algebra 'D. That is to say, for B we may define a new composition 
product ogB on D 

HI O , E H ~ : = H I O H ~ ~ E D ~ ( H ~ , H ~ ) .  (28) 
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One can check that 

HI O s B  ( H z  O G B  H3) - (HI O C B  Hz)  O G B  H3 = €8DB(Hi, Hz, H3) + o(€') = O(& 

since 6DB = DdB = 0, so that the new composition law is associative to order E .  In 
particular, 

a,, ogB ah = a,ah + $ E B ~ ~  

[a., ab],,, := a, otB ab - ab oCB a, = EBuh . 
and so 

So if B has a vector potential A, B = dA, the deformed product (28) becomes 

Hi OGB Hz = H i & + E ( f f i D A ( H z )  - DA(H1ff2) 4- D A ( H i ) H z )  

= ( H i  + € o A ( H i ) ) ( H 2 + € D A ( H z ) )  - E D ~ ( H L H Z ) + O ( E ~ )  
which from (29) is equal to 

HiHz+ HI(VO+EA)H~(VO++A) - (H~HZ)(VO+EA)+O(E*). (30). 
Thus the deformed product HI  oeg HI arises in this case by transforming the operators 
Hj(Vo) 4 Hj(Vo+cA) in a way determined by the perturbation of theEuclidean connection 
by the vector potential A .  Such deformations may be considered trivial. Any 1-form A will 
provide a trivially deformed product on 13 in this way. 

Even when E has no vector potential, equation (25) shows that the time derivative of 
the deformed product of two time-independent operators HI, Hz, 

a,(x1 0 ~ 8  ~ 2 )  = H] ora, ~2 (31) 
will be given by the perturbation 00 -+ VO - € E ,  and so is trivial in the above sense. This 
is the algebraic interpretation of (25); the geometric version is of course that B remains in 
the same de Rham cohomology class as time passes. 

In the static case the deformed product O ~ B  is constant in time; dE  = 0 so that D E  is 
a derivation on 'D. 

Equations (26) and (27) yield a similar co-chain interpretation. 
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